Zamki centralne od skody

okiem (rotorem), jest jednak bardzo rzadko stosowany. Odmiana czterosuwowa w wielu krajach nazywana jest silnikiem Otto. Zaletami silnika iskrowego są: łatwy rozruch niezależnie od temperatury zewnętrznej silnika, d

Zamki centralne od skody

Silnik iskrowy

Silnik iskrowy może być zbudowany w układzie silnika dwusuwowego, jak i w układzie czterosuwowym, istnieje jeszcze tzw. silnik Wankla z obrotowym tłokiem (rotorem), jest jednak bardzo rzadko stosowany. Odmiana czterosuwowa w wielu krajach nazywana jest silnikiem Otto.

Zaletami silnika iskrowego są:

łatwy rozruch niezależnie od temperatury zewnętrznej silnika,
dobra szybkobieżność (szybka reakcja na "dodanie gazu"),
łatwość uzyskiwania wysokich obrotów pracy,
stosunkowo wysoka uzyskiwana moc,
dość lekka konstrukcja,
niezbyt skomplikowana konstrukcja układu zasilania.

Te zalety są jednak okupione wadami, takimi jak:

mniejsza sprawność energetyczna (większe jednostkowe zużycie paliwa),
mniejsza trwałość w stosunku do silnika wysokoprężnego,
ze względu na właściwości palne benzyny większe niebezpieczeństwo niekontrolowanego samozapłonu paliwa (w tym eksplozywnego) przy składowaniu i dostarczaniu go do silnika,
niższy moment obrotowy w stosunku do silnika o podobnych parametrach z zapłonem samoczynnym,
rozłożenie maksymalnych wartości momentu obrotowego w wyższym zakresie obrotów w stosunku do silnika o zapłonie samoczynnym, przez co, np. przy ruszaniu pojazdu, następuje konieczność "wkręcania" silnika na wyższe obroty, a to skutkuje zwiększeniem zużycia paliwa i zmniejszeniem "użytecznego" zakresu obrotów silnika.


Źródło: https://pl.wikipedia.org/wiki/Silnik_o_zap%C5%82onie_iskrowym


Cechy silnika widlastego

Silniki stosowane do napędu lokomotyw spalinowych są budowane w układach od R6 wzwyż. Lokomotywy używane w Polsce mają silniki typu R6, V8, V12, V16 oraz silnik dwurzędowy (zob. ST43). Silnik widlasty V8 ma gorsze wyrównoważenie niż silnik R6, gdyż dopiero od 6 wykorbień wzwyż wału korbowego tzw. siły pierwszego i drugiego rzędu są sprowadzone do zera. W konstrukcjach współczesnych stopniowo odchodzi się od silników z liczbą cylindrów większą niż 12. Jest to spowodowane dużymi kosztami produkcji i serwisu tych silników, natomiast wysokie parametry robocze (moc, moment obrotowy) udaje się uzyskać poprzez wydajne układy doładowania silnika.
Cechy silnika widlastego

Zalety
Mniejsza długość silnika (krótszy wał korbowy)
Bardziej zwarta konstrukcja
Możliwość uzyskania dużych pojemności skokowych i dużych mocy

Wady
Bardziej złożona konstrukcja stopy korbowodu
Przy stosowaniu korbowodu doczepnego różna pojemność skokowa pomiędzy cylindrami pierwszego i drugiego rzędu (różnice pomijalne)
Przy pewnych kątach rozwidlenia skłonność do drgań silnika.


Źródło: https://pl.wikipedia.org/wiki/Silnik_widlasty


Jak działa turbo?

Obroty sprężarki, a tym samym i jej stopień sprężania zależą od ilości gazów napędzających turbinę, która przy małym zapotrzebowaniu na moc jest mała. Dlatego gdy gwałtownie wzrasta zapotrzebowanie na moc silnika (zmiana biegu, wciśnięcie gazu w celu przyspieszenia) pomimo dostarczenia dodatkowego paliwa, przez moment, aż sprężarka zostanie rozpędzona sprężanie sprężarki jest małe, przez co silnik przez moment ma małą moc. Dodatkowo w tym czasie z powodu mniejszej ilości dostarczonego powietrza do cylindrów, układ dostarczający paliwo nie może dostarczyć go tyle co przy statycznym obciążeniu silnika. Efekt mniejszej mocy silnika przy gwałtownym wzroście zapotrzebowania na moc nazywany jest turbodziurą. Usprawnienia konstrukcyjne sprawiają, że dzisiejsze turbosprężarki mają mniejszy moment bezwładności wirnika, a dawkowanie paliwa jest dokładniejsze, przez co efekt turbodziury jest mniejszy.

W celu ograniczenia tego zjawiska stosuje się też sterowanie wydajnością turbosprężarki. Możliwe są tu dwa sposoby ? sterowanie ilością spalin przepływających poprzez turbinę lub sterowanie geometrią przepływu.

W pierwszym rozwiązaniu stosuje się zawór obejściowy, który jest sterowany poprzez ciśnienie doładowywania ? gdy ciśnienie wytwarzane przez sprężarkę przekracza ustaloną przez konstruktora silnika wartość, zawór otwiera się i przepuszcza część spalin poza wirnikiem turbiny.

Drugim rozwiązaniem jest umieszczenie łopatek sterujących kątem pod jakim spaliny trafiają na łopatki wirnika. Przy małych prędkościach obrotowych silnika, spaliny uderzają w wirnik pod kątem zbliżonym do prostego i jednocześnie łopatki sterujące wytwarzają rodzaj dyszy przyspieszających przepływ spalin. Ograniczenie ciśnienia doładowania polega na kierowaniu strumienia spalin pod coraz ostrzejszym kątem względem łopatek turbiny przy jednoczesnym poszerzeniu kanału przepływu co powoduje ograniczenie prędkości spalin. Konstrukcyjnie rozwiązuje się to w ten sposób, że wirnik turbiny otacza rodzaj żaluzji kierujących przepływem spalin.

Pierwotnie ciśnienie doładowywania było sterowane czysto mechanicznie, we współczesnych silnikach samochodowych ciśnieniem steruje sterownik silnika, wykorzystując sygnały z czujników ciśnienia i ilości zassanego powietrza. Elementami wykonawczymi sterującymi zaworami lub żaluzjami są siłowniki pneumatyczne (wykorzystujące podciśnienie) sterowane elektrozaworami lub silniki krokowe ? tak jak w silniku 1,2 TSI grupy VW

W sprężarce rośnie temperatura powietrza w wyniku:

wzrostu ciśnienia (zgodnie z równaniem adiabaty),
przepływu ciepła przez elementy konstrukcyjne od gorących spalin do chłodniejszego powietrza.

Jest to zjawisko niekorzystne, gdyż obniża efekt działania turbosprężarki, oraz zwiększa temperaturę w momencie spalania. Zwiększenie temperatury wpływa niekorzystnie na elementy silnika, obniża sprawność silnika jak i zwiększa wydzielanie tlenków azotu. Aby obniżyć temperaturę sprężonego powietrza stosowany jest wymiennik ciepła zwany intercoolerem lub chłodnicą międzystopniową powietrza.

Źródło: http://pl.wikipedia.org/wiki/Turbospr%C4%99%C5%BCarka



© 2019 http://studio7.waw.pl/